Try Blinkist to get the key ideas from 7,500+ bestselling nonfiction titles and podcasts. Listen or read in just 15 minutes.
Start your free trialBlink 3 of 8 - The 5 AM Club
by Robin Sharma
"The Story of Radiation – How the New Science of the Human Body Is Changing the Way We Live"
Strange Glow by Timothy J. Jorgensen is a fascinating study of radiation and its effects on the human body, from the discovery of radiation to modern-day uses and accidents.
“I’ve seen the light!” It’s such a simple expression, but it reveals much about the near mystical importance of light for humans. From sunsets to sparkles on the water, light and its refracted parts, –also known as colours– cause delight. These light rays? They’re radiation. In fact, it’s the radiation you can see with your naked eyes, because it excites special molecules in your retina. This visible light falls in the middle of the energy spectrum, sandwiched between Infrared energy below, and Ultraviolet above.
Light, like all radiation, is energy on the move, and it moves in waves. From the longest, or radio waves, at the bottom of the spectrum, to the shortest, or gamma rays, at the top, all are just energy moving through space. Thanks to Einstein, we know that all electromagnetic radiation travels at a constant speed: the speed of light. But like waves on the ocean, the crests of each wave can be closer together or farther apart. Short, frequent waves carry more energy at the same speed, while slow, rolling waves carry less.
Electricity, too, is energy on the move. While we harness it now for almost everything, before the 19th century it was a destructive force of nature, lightning started fires and could kill in an instant. When electricity was first introduced to homes for electric light, it was seen as incredibly dangerous. More dangerous, ironically, than the gas lamps and candles that regularly burned down houses.
The discovery and early transmission of radio waves, however, didn’t generate the same fear, even though it was linked to electricity.
As a young man of 20, radio pioneer Guglielmo Marconi discovered the work of Heinrich Hertz, who had detected radio waves in his laboratory back in 1888. The discovery went almost unnoticed by the world, but when Hertz died in 1894, Marconi saw the discovery lauded in the press, and immediately understood its potential. Marconi jumped in and began exploring the possibility of using long wavelength electromagnetic, or radio, waves to transmit messages wirelessly.
But it was another discovery in 1891 by the French Scientist Édouard Branly, that opened the door to radio communications. Imagine the scene: playing around in his lab with electric sparks one day, Branly notices that the sparks of electricity made some metal fillings sealed in a nearby glass tube jump up and line up from end to end. Once the electricity stops, a quick tap on the tube makes them crumble into a pile again. Some strange force made them defy gravity and organise themselves into a line! But what? The force is so strong it works even if the spark is on the other end of the room.
Soon, any scientist with a sealed tube of metal filings is trying it out. Even better, they discover that by placing a bell right next to the tube, the filings could move the glass and tap the bell as they jumped up. It wasn’t long before scientists were blowing their friends’ minds by ringing a bell with a spark from another room and showing that energy can transmit through seemingly empty space.
Marconi saw the potential to use electrical energy to transmit waves further and further. On December 12, 1901, he successfully transmitted a signal from Poldhu, England to St. John's, Canada. Decades later, most homes had a radio receiver.
Oddly enough, through this process, Marconi and his team never worried about the potential dangers of radio wave exposure even knowing energy waves could be dangerous. The electricity they used terrified them, but the radio waves never did. Looking back, Marconi himself realised this was short sighted, but history proved him right.
Why? It's all about wavelength, which we’ll get into next.
Strange Glow: The Story of Radiation Is a sweeping account of the rise of nuclear science, tackling some of the biggest myths and realities surrounding radiation. Debunking some safety myths while carefully documenting real risks, it is also an urgent call for society to confront their fears and in doing so, make better choices in everything from medical procedures to nuclear power.
Strange Glow by Timothy J. Jorgensen (2016) explores the fascinating history and science behind radiation, revealing its impact on our lives. Here's why this book is worth reading:
It's highly addictive to get core insights on personally relevant topics without repetition or triviality. Added to that the apps ability to suggest kindred interests opens up a foundation of knowledge.
Great app. Good selection of book summaries you can read or listen to while commuting. Instead of scrolling through your social media news feed, this is a much better way to spend your spare time in my opinion.
Life changing. The concept of being able to grasp a book's main point in such a short time truly opens multiple opportunities to grow every area of your life at a faster rate.
Great app. Addicting. Perfect for wait times, morning coffee, evening before bed. Extremely well written, thorough, easy to use.
Try Blinkist to get the key ideas from 7,500+ bestselling nonfiction titles and podcasts. Listen or read in just 15 minutes.
Start your free trialBlink 3 of 8 - The 5 AM Club
by Robin Sharma
What is the main message of Strange Glow?
The main message of Strange Glow is that radiation is both dangerous and pervasive in our modern world.
How long does it take to read Strange Glow?
The estimated reading time for Strange Glow varies depending on the reader's speed. However, the Blinkist summary can be read in just 15 minutes.
Is Strange Glow a good book? Is it worth reading?
Strange Glow is worth reading because it sheds light on the hidden dangers of radiation and its impact on our lives.
Who is the author of Strange Glow?
The author of Strange Glow is Timothy J. Jorgensen.